Descriptive geometry and engineering graphics

L01

Roland Pawliczek

Contact details

Roland Pawliczek
B16 (ground floor, Faculty of Mechanical Engineering)
e-mail: r.pawliczek@po.edu.pl
Consultations: Wednesday 12.00-13.00
elearning.po.edu.pl \rightarrow Descriptive geometry [21/22L] course

Conditions for passing the subject:

- grade from the test
- positive evaluation of the tasks on the exercises

Nomenclature

- point $\rightarrow \quad$ A, B, C ... 1, 2, $3 \ldots$ I, II, III
- straight-line $\quad \rightarrow \quad \mathbf{a}, \mathbf{b}, \mathbf{c} \ldots$
- plane $\quad \rightarrow \quad \alpha, \beta, \gamma \ldots$

relationships

	parallerism $\quad a\|\mid b$	
A	intersection $\quad \mathrm{a} \times \mathrm{b}=\mathrm{A}$	
	straight line intersecting the plane $\mathrm{a} \times \alpha=\mathrm{A}$ straight line parallel to the plane b \|	α
	parallel planes $\quad \alpha\|\mid \beta$	
	intersecting planes $\quad \alpha \times \beta=\mathrm{a}$	

projections

Projection of any point A on the plane π is the point described as A^{\prime}, in which the projection line m II k (parallel), while crossing through point A , it pierces the view plane $\boldsymbol{\pi}$

projections

Projection of any point A on the plane π is the point described as A^{\prime}, in which the projection line $\mathrm{m} \mathrm{II} k$ (parallel), while crossing through point A , it pierces the view plane $\boldsymbol{\pi}$

Perpendicular projection $\mathrm{k} \perp \pi$

Invariants projections

- affiliation of a point to a set of points,
- collinearity of points,
- parallelism of straight lines,
- the ratio of the section division,
- ratio of the length of parallel segments,
- length of the segment parallel to the viewport,
- the size of the angle with both arms parallel to the viewport.

Projections - axonometry

Type of parallel projection, projection of space (3D object) on a plane using a rectangular axis system.

S - direction of projection, π^{\prime} - viewport , x'y'z' - projected coordinate system

