Department of Mechanics and Machine Design

Graphical Programming

Transfer function model

Roland PAWLICZEK

Transfer function model

In the most general case, the output signal $y(t)$ can be the differential equation of the higher order of the input signal $u(t)$

$$
\begin{aligned}
& a_{n} \frac{d^{n} y(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} y(t)}{d t^{n-1}}+\cdots+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)= \\
& =b_{m} \frac{d^{m} u(t)}{d t^{m}}+b_{m-1} \frac{d^{m-1} u(t)}{d t^{m-1}}+\cdots+b_{1} \frac{d u(t)}{d t}+b_{0} u(t)
\end{aligned}
$$

where a_{i} for $i=0 . . n$,
$b_{i,}$ for $i=0 . . m$
they are constant coefficients of the equation

Transfer function model

Transformation performing a certain function $f(t)$ (the so-called original) into the function of a complex variable $f(s)$ (the so-called image),

$$
L[f(t)]=f(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

where: $s \in C ; C$ - set of complex numbers, s - complex number, t time.

Transfer function model

Linearity of the transform

$$
\begin{aligned}
& L[A \cdot f(t)+B \cdot f(p)]=A \cdot L f(t)+B \cdot L f(p) \\
& \text { e.g. } L\left[3 \cdot \sin (2 t)+7 \cdot e^{-3 t}\right]=3 \cdot L\left[\sin (2 t)+7 L\left[e^{-3 t}\right]\right.
\end{aligned}
$$

Simplified rules:

$$
\begin{aligned}
& \mathrm{L}[\mathrm{y}(\mathrm{t})]=\mathrm{y}(\mathrm{~s}) \\
& \mathrm{L}\left[\mathrm{y}^{\prime}(\mathrm{t})\right]=\mathrm{s} \cdot \mathrm{y}(\mathrm{~s}) \\
& \mathrm{L}\left[\mathrm{y}^{\prime \prime}(\mathrm{t})\right]=\mathrm{s}^{2} \cdot \mathrm{y}(\mathrm{~s})
\end{aligned}
$$

Transfer function model

Laplace transfer of ODE:

$$
\begin{aligned}
& a_{n} \frac{d^{n} y(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} y(t)}{d t^{n-1}}+\cdots+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)= \\
& =b_{m} \frac{d^{m} u(t)}{d t^{m}}+b_{m-1} \frac{d^{m-1} u(t)}{d t^{m-1}}+\cdots+b_{1} \frac{d u(t)}{d t}+b_{0} u(t)
\end{aligned}
$$

$$
s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{n}=: b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{1} s+b_{0}
$$

Transfer function model

The function converting the input signal to the output (object transmittance) can be defined as:

$$
\mathrm{G}(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}}
$$

Use known $G(s)$ to calculate response $Y(s)$ on input $U(s)$:

$$
Y(s)=G(s) U(s)
$$

Transfer function model

$$
\text { Example: } \begin{aligned}
& \frac{d y}{d t}-3 y=2 x \\
& L\left(\frac{d y}{d t}-3 y\right)=L(2 x) \\
& L\left(\frac{d y}{d t}\right)-3 L(y)=2 L(x) \\
& L\left(y^{\prime}\right)-3 L(y)=2 L(x)
\end{aligned}
$$

note:

$$
\mathrm{L}\left(\mathrm{y}^{\prime}\right)=\mathrm{s} \cdot \mathrm{y}(\mathrm{~s}) \quad 3 \mathrm{~L}(\mathrm{y})=3 \cdot \mathrm{y}(\mathrm{~s}) \quad 2 \mathrm{~L}(\mathrm{x})=2 \cdot \mathrm{x}(\mathrm{~s})
$$

$$
\begin{aligned}
& s \cdot y(s)-3 \cdot y(s)=2 \cdot x(s) \\
& y(s) \cdot(s-3)=2 \cdot x(s) \\
& \frac{y(s)}{x(s)}=\frac{2}{s-3}=G(s)
\end{aligned}
$$

Transfer function model

Example:

VALVE

F - spring force
m - moving mass
k - spring constant
c-damping
x-displacement

$$
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=F(t)
$$

Transfer function model

Example:

$$
\begin{aligned}
& m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+\mathrm{kx}=\mathrm{F}(\mathrm{t}) \\
& \mathrm{L}\left[\mathrm{~m} \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+\mathrm{c} \frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{kx}\right]=\mathrm{L}[\mathrm{~F}(\mathrm{t})] \\
& \mathrm{m} \cdot \mathrm{~L}\left[\frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}\right]+\mathrm{c} \cdot \mathrm{~L}\left[\frac{\mathrm{dx}}{\mathrm{dt}}\right]+\mathrm{k} \cdot \mathrm{~L}[\mathrm{x}]=\mathrm{L}[\mathrm{~F}(\mathrm{t})] \\
& \mathrm{L}\left[\frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}\right]=\mathrm{s}^{2} \cdot \mathrm{x}(\mathrm{~s}) \quad \mathrm{L}\left[\frac{\mathrm{dx}}{\mathrm{dt}}\right]=\mathrm{s} \cdot \mathrm{x}(\mathrm{~s}) \quad \mathrm{L}[\mathrm{x}]=\mathrm{x}(\mathrm{~s}) \quad \mathrm{L}[\mathrm{~F}(\mathrm{t})]=\mathrm{F}(\mathrm{~s}) \\
& \mathrm{m} \cdot \mathrm{~s}^{2} \cdot \mathrm{x}(\mathrm{~s})+\mathrm{c} \cdot \mathrm{~s} \cdot \mathrm{x}(\mathrm{~s})+\mathrm{k} \cdot \mathrm{x}[\mathrm{~s}]=\mathrm{F}(\mathrm{~s}) \\
& \mathrm{x}(\mathrm{~s})\left(\mathrm{m} \cdot \mathrm{~s}^{2}+\mathrm{c} \cdot \mathrm{~s}+\mathrm{k}\right)=\mathrm{F}(\mathrm{~s}) \\
& \frac{\mathrm{x}(\mathrm{~s})}{\mathrm{F}(\mathrm{~s})}=\frac{1}{\mathrm{~m} \cdot \mathrm{~s}^{2}+\mathrm{c} \cdot \mathrm{~s}+\mathrm{k}}=\mathrm{G}(\mathrm{~s})
\end{aligned}
$$

Transfer function model

Transmittance is always in the form of a fraction:

$$
\mathrm{G}(\mathrm{~s})=\frac{\mathrm{L}(\mathrm{~s})}{\mathrm{M}(\mathrm{~s})}=\frac{[\text { Numerator }]}{[\text { Denominator }]}
$$

$G(s)=\frac{a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{2} s^{2}+a_{1} s+a_{0}}{b_{n} s^{n}+b_{n-1} s^{n-1}+\ldots+b_{2} s^{2}+b_{1} s+b_{0}}$
Numerator $=\left[a_{0}, a_{1}, a_{2}, \ldots a_{n-1}, a_{n}\right]$
Denomin ator $=\left[b_{0}, b_{1}, b_{2}, \ldots b_{n-1}, b_{n}\right]$
$\frac{X(s)}{F(s)}=\frac{1}{\mathrm{~ms}^{2}+\mathrm{cs}+\mathrm{k}}$

$$
\Rightarrow \quad \mathrm{a}_{0}=1, \mathrm{~b}_{0}=\mathrm{k}, \mathrm{~b}_{1}=\mathrm{c}, \mathrm{~b}_{2}=\mathrm{m}
$$

Numerator $=[1]$
Denomin ator $=[k, c, m]$

Transfer function model

Example:

$$
\frac{X(s)}{F(s)}=\frac{1}{\mathrm{~ms}^{2}+\mathrm{cs}+\mathrm{k}}
$$

Transfer function model

Configuration window

In the Parameter source field in that dialog window you can select between Configuration page and Terminal. By selecting Configuration page you must define the numerator and denominator parameters of the transfer function on the dialog window.

