

Department of Mechanics and Machine Design

Graphical Programming

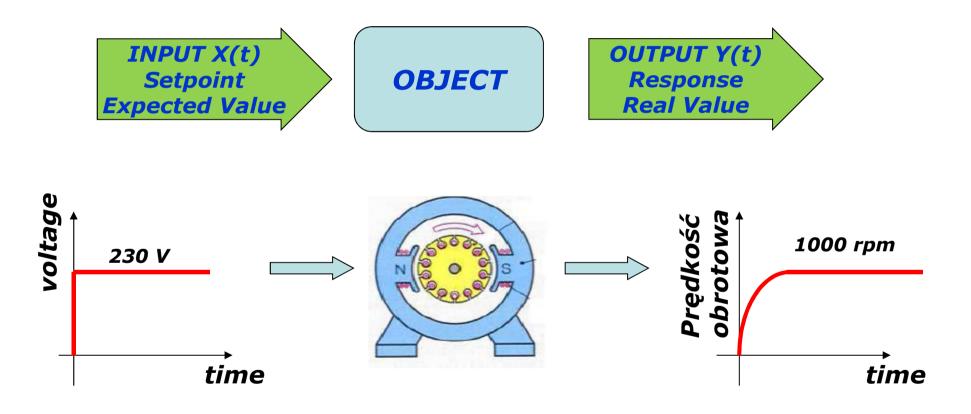
System response

Roland PAWLICZEK

1

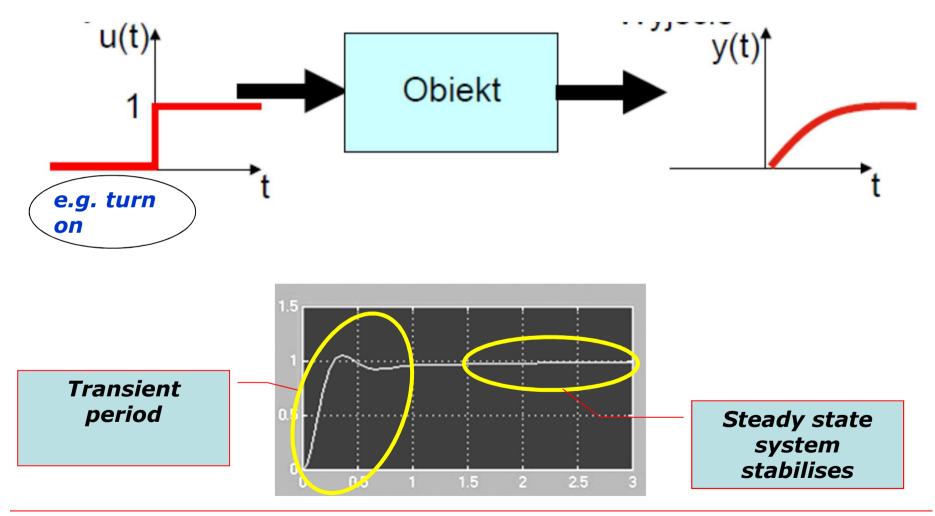
Model of the system

In the simplest way, a system (machines, drives) can be represent as the single-input-single-output (SISO) object, where the output signal y(t) in a reaction on the input signal u(t):



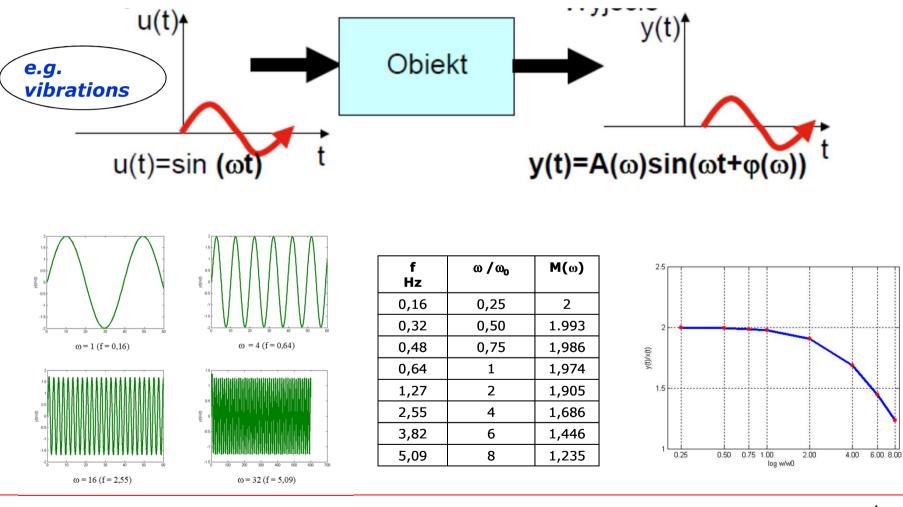
STEP response

Step response is the answer of the system for input signal in the form of **step signal**:



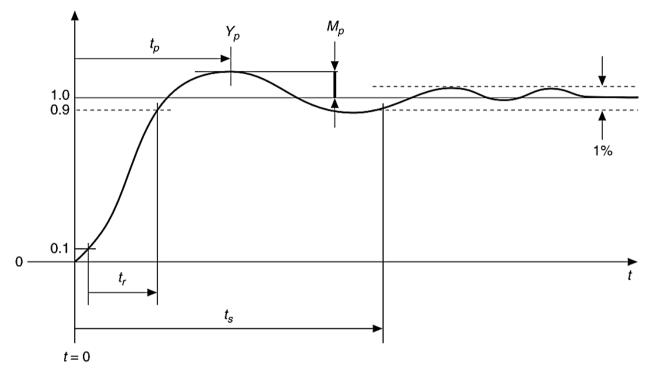
Frequency Response

Frequency response is the answer of the system for input signal in the form of **sine wave with different frequency.**



Step Response parameters

In general case it can be as follow:



• Rise time (t $_r$)—The time required for the system to rise from a lower threshold to an upper threshold. The default values are 10% for the lower threshold and 90% for the upper threshold.

• Maximum overshoot (M $_{p}$)—The system response value that most exceeds unity, expressed as a percent.

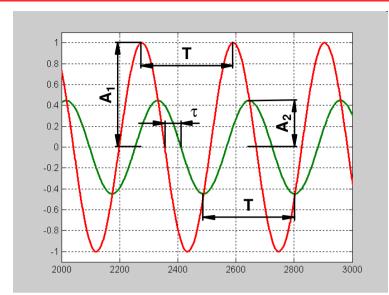
• Peak time (t $_p$)—The time required for the system to reach the peak value of the first overshoot.

• Settling time (t $_s$)—The time required for the system to reach and stay within a threshold of the final value. The default threshold is 1%.

• Steady state gain—The final value around which the system response settles to a step input.

• Peak value (y $_p$)—The value at which the maximum absolute value of the time response occurs.

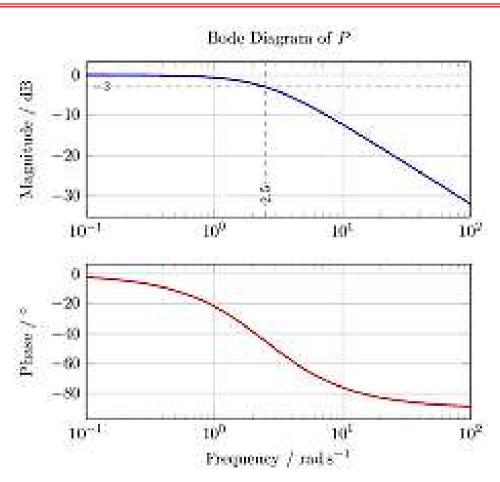
Frequency response: Bode diagrams:



- input: $x(t) = A_1 sin(\omega t)$ - output: $y(t) = A_2 sin(\omega t + \varphi)$

magnitude:
$$M(\omega) = \frac{A_2(\omega)}{A_1}$$

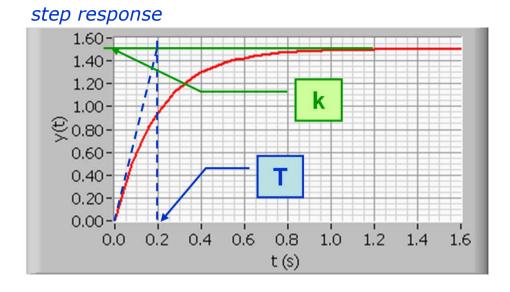
phase: $\omega = 2\pi f = \frac{2\pi}{T} \implies \phi = \frac{2\pi\tau}{T}$



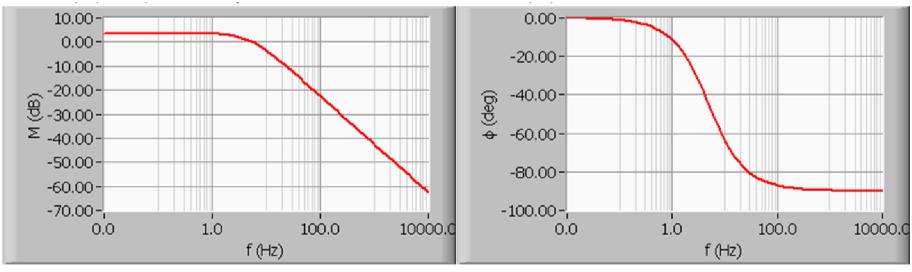
Types of object: 1st order system

Mathematical model: $T\frac{dy}{dt} + y(t) = kx(t)$ $G(s) = \frac{k}{Ts+1}$

T – time constant; k – system gain



frequency response: Bode diagrams



Types of object: 2nd order oscillating system

Mathematical model:

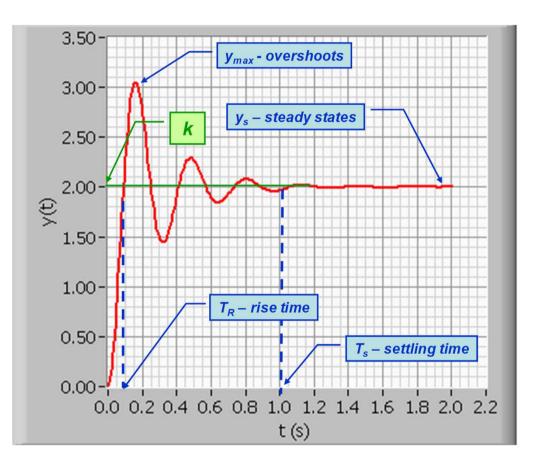
$$\frac{d^2y}{dt^2} + 2D\omega_n \frac{dy}{dt} + \omega_n^2 y(t) = \omega_n^2 ku(t)$$

$$G(s) = \frac{k\omega_n^2}{s^2 + 2D\omega_n s + \omega_n^2}$$

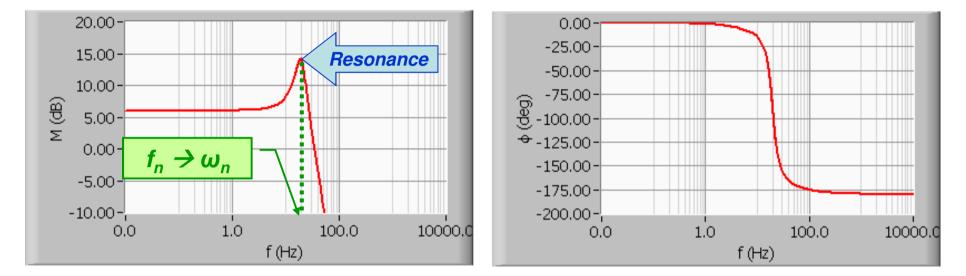
k – system gain

D = damping factorfrequency response: Bode diagrams $\omega_n - natural frequecy$

step response



Types of object: 2nd order oscillating system



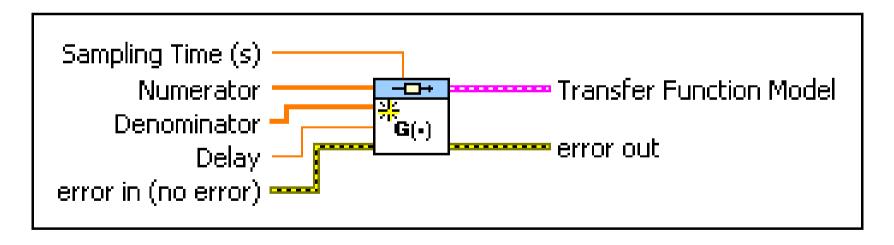
frequency response: Bode diagrams

Create Transfer Function Model:

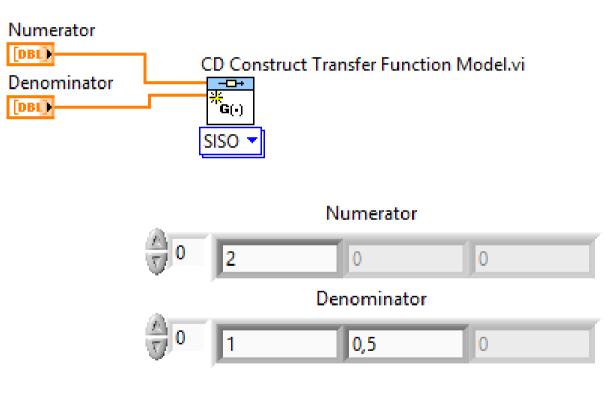
On Block Diagram Window:

1. Open Function Palette / Control & Simulation / Control Design / Model Construction / CD Construct Transfer Function Model

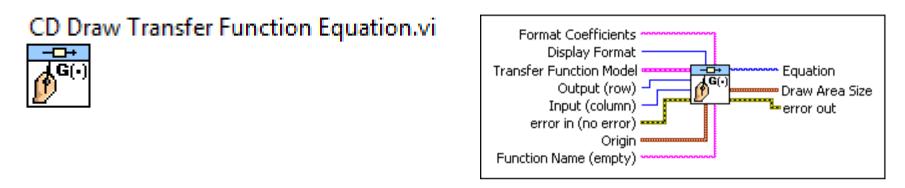
CD Construct Transfer Function Model.vi



- 2. Place the cursor on terminal **Numerator**, click Rigth Mouse Button (RMB) and **Create/Control**
- 3. Repeat operation for terminal **Denominator**

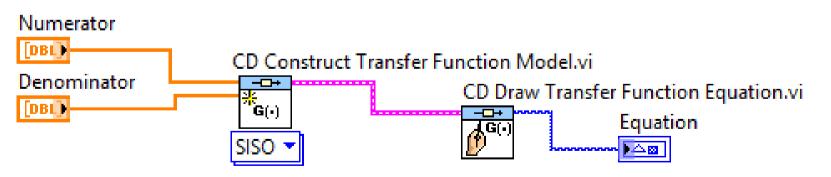


4. Open Function Palette / Control & Simulation / Control Design / Model Construction / CD Draw Transfer Function Model



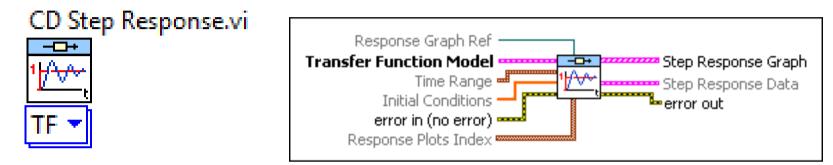
5. Click RMB on terminal **Eqiation** and create **Indicator.** Connect terminals **Transfer Funtion Model**.

Run the program.

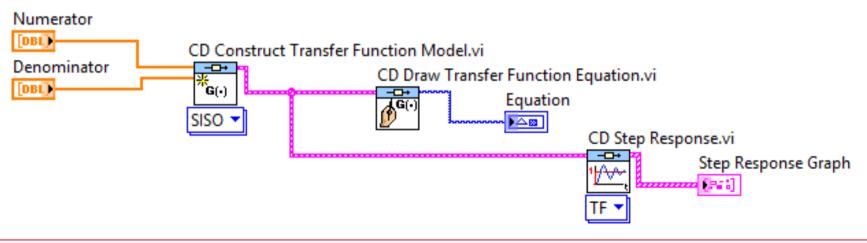


See Step Response:

1. Open Function Palette / Control & Simulation / Control Design / Time Response / CD Step Response

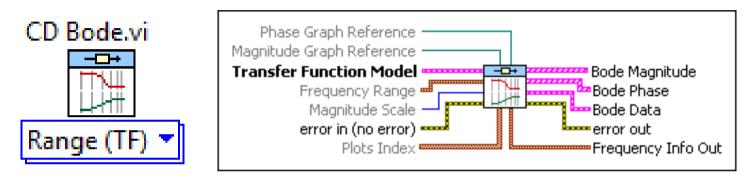


2. Connect terminals **Transfer Function Models** and generate **Indicator** for terminal **Step Response Graph**.



See Frequecny Response:

1. Open Function Palette / Control & Simulation / Control Design / Frequency Response / CD Bode



2. Connect terminals **Transfer Function Models** and generate **Indicator** for terminals **Bode Magnitude** and **Bode Phase**.

