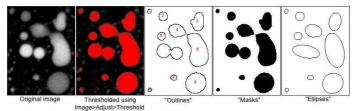


Particle analysis Image Segmentation Binary Morphology Particle Measurements

ME-CAE/2019


Roland Pawliczek, PhD

OPOLE UNIVERSITY OF TECHNOLOGY

- > You can use particle analysis to detect connected regions or groupings of pixels in an image and then make selected measurements of those regions.
- > These regions are commonly referred to as particles.
- > A particle is a contiguous region of nonzero pixels.
- Zero valued pixels are in the background state, and all nonzero valued pixels are in the foreground.
- > You can use particle analysis to find statistical information—such as the presence of particles, their number and size, and location.

https://imagej.nih.gov/ij/docs/menus/analyze.html

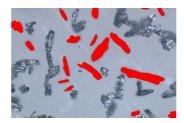


Image Segmentation

Thresholding segments an image into a particle region—which contains the objects under inspection—and a background region based on the pixel intensities within the image. The resulting image is a binary image.

Use *thresholding* to extract areas that correspond to significant structures in an image and to focus analysis on these areas.

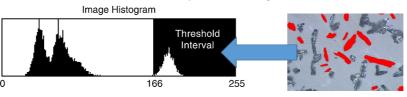
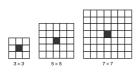
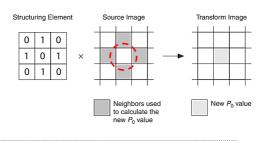

2

Image Segmentation

- > Global Grayscale Thresholding includes manual thresholding and automatic techniques.
- ➤ Particles are characterized by an intensity range. They are composed of pixels with gray-level values belonging to a given *threshold interval*. All other pixels are considered to be part of the background.
- > Thresholding sets all pixels that belong to a range of pixel values, called the **threshold interval**, to 1 or a user-defined value, and it sets all other pixels in the image to 0.
- > Pixels inside the threshold interval are considered part of a particle. Pixels outside the threshold interval are considered part of the background.

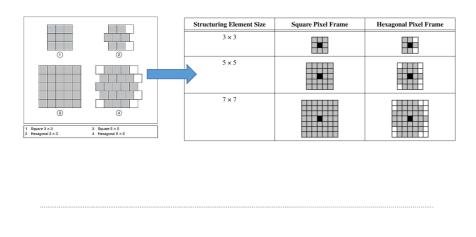



Binary Morphology

ightharpoonup Because thresholding ightharpoonup noise particles,

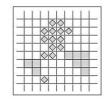
particles touching the border of images, particles touching each other, particles with uneven borders.

- Morphological functions can remove this unwanted information, thus improving the information in the binary image.
- Morphological transformations use a 2D binary mask called a structuring element to define the size and effect of the neighborhood on each pixel.


3

Binary Morphology

- ➤ Picture frame A digital image is a 2D array of pixels arranged in a rectangular grid.
- These pixel configurations introduce the concept of a pixel frame.
- ➤ Pixel frames can either be aligned (square) or shifted (hexagonal).



Binary Morphology

- > Connetivity grouping proces.
- > connectivity-4, two pixels are considered part of the same particle if they are horizontally or vertically adjacent
- > connectivity-8, two pixels are considered part of the same particle if they are horizontally, vertically, or diagonally adjacent.

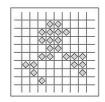
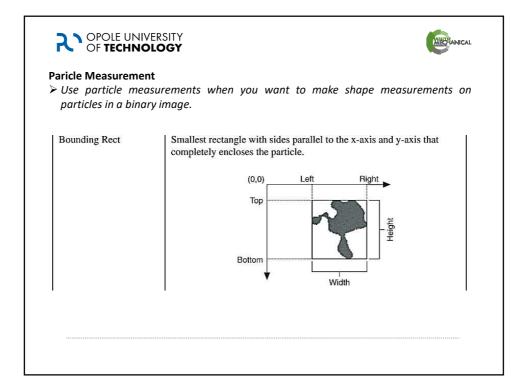
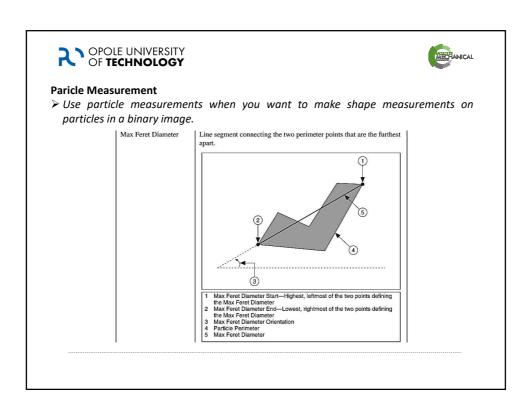
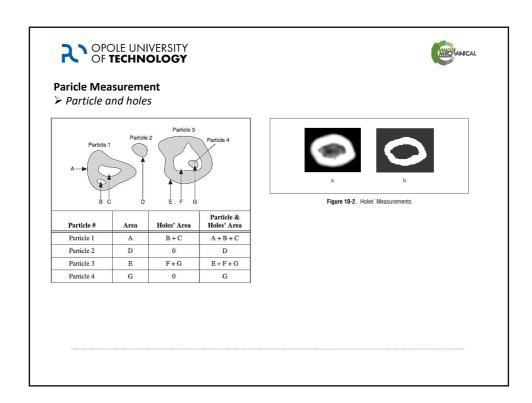





Figure 9-10. Connectivity-4 Figure 9-11. Connectivity-8

> Areas, Ratios:

Table 10-4. Areas				
Measurement	Definition	Symbol	Equation	
Area	Area of the particle.	A	_	
Holes' Area	Sum of the areas of each hole in the particle.	A _H	_	
Particle & Holes' Area	Area of a particle that completely covers the image.	A _T	$A + A_H$	
Convex Hull Area	Area of the particle Convex Hull.	A _{CH}	_	
Image Area	Area of the image.	A _I	_	

Table 10-7. Ratios

Measurement	Definition	Equation
% Area/Image Area	Percentage of the particle Area covering the Image Area.	$\frac{A}{A_I} \cdot 100\%$
% Area/(Particle & Holes' Area)	Percentage of the particle Area in relation to its Particle & Holes' Area.	$\frac{A}{A_T} \cdot 100\%$
Ratio of Equivalent Ellipse Axes	Equivalent Ellipse Major Axis divided by Equivalent Ellipse Minor Axis.	$\frac{E_{2a}}{E_{2b}}$
Ratio of Equivalent Rect Sides	Equivalent Rect Long Side divided by Equivalent Rect Short Side.	$\frac{R_a}{R_b}$

... and many others...